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Reactive power control is the most efficient and popular voltage control method, especially for variable active power 
demand. Static Var Compensators (SVCs) are being increasingly employed in modern power systems. This paper proposes 
an Artificial Neural Network (ANN)-based Static Var Compensator (SVC) controller and a novel bus reducing methud.for 
power systems. Two types of artificial neural network controllers namely are Multi-Layer Perceptrons (MLP) with back 
propagation learning algorithm, and Radial Basis Function (RBF) network are used. In the simulations, a variable power 
demand is modelled as a disturbance effect and voltage stability control was done at the operating points with SVC. It is 
shown that the voltage output was successfully regulated and desired voltage value are obtained quickly. Transient 
responses for voltage and susceptance show that SVC controller with ANNs provide optimum system performance for a 
disturbance effect. Performance of ANN based SVC controllers were tested. The effectiveness and feasibility of the 
proposed control is demonstrated with the simple two bus system and three-machine nine-bus WSCC system. The results 
show that improvement especially ANN based RBF controller has better performance the MLP based controller.   
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1. Introduction 
 

Due to the environmental limitations and immense 

cost of building new transmission lines, available power 

systems are operating ever closer to their utility limits with 

the fast increase of load demand. As a result, many power 

grids are highly stressed and voltage instability problem 

poses a primary threat to system stability, security, and 

reliability.   

Voltage collapse and other instability problems are 

often related to the inability of the system to meet reactive 

power demands. The power system control technique has 

been developed with the advancement of power electronic 

technologies that introduce new degrees of freedom into 

the operation of power system. It is found that Flexible AC 

Transmission System (FACTS) devices are good choice to 

improve the voltage profile and stability in a power system, 

which operates near the steady-state stability limit and 

may result in voltage instability.  

Lately, with the improvement of power electronic 

technologies, several FACTS devices make it possible to 

control power flows and bus voltages. [1-2].  

The SVC has been widely used in power system 

which are well known to improve power system properties 

such as steady-state stability limits, voltage regulation and 

VAr compensation, dynamic over-voltage and under 

voltage control, and damp power system oscillations[3-4] 

for both voltage regulation and dynamic stability 

enhancement.    

Nowadays, SVC control is increasingly applied in 

power systems. Some conventional method have been 

used in previous research for control of SVC [5-6], Hopf 

bifurcation control [7], nonlinear  and H∞ control [4-7-8], 

adaptive control [9], PID [10] and  fuzzy- PID control 

[11-12], Intelligent  controller [13], fuzzy logic[14-15] 

and neuro-fuzzy controller [16], optimal predictive 

controller [17], nonlinear and nonlinear  robust controller 

[18-19]. 

Artificial neural network (ANN) is considered as an 

important method of artificial intelligence and it is being 

used succesfully in many areas of power systems, such as 

power system control, of system values prediction etc. [20-

21]. Load forecasting, dynamic security assesment, fault 

diagnosis, etc. are discussed In [22] interesting 

applications of ANN to power systems. 

In voltage stability works the control of reactive 

power is a practical and useful method in heavily loaded 

systems. Susceptance value is achieve desired value.  

In this paper, a satisfactory controller, incorporated in 

the system, is developed by using ANN. A suitable 

susceptance for stable operation can be generated by 

voltage error. The error of the output and desired voltage 

has been used to regulate/ produce a constant voltage 

output. 



538                              Kadir Abaci, Zafer Özer, M. Ali Yalçin, Ercan Köse 

 

In this work detailed analysis of two kinds of ANN 

based controllers, MLP and RBF are given. Results of 

simulation studies are presented to illustrate the 

effectiveness of the proposed controller and damped 

oscillations. It is trained online. At the end of online 

training, it is enabled to reach the desired value. The main 

advantage of the proposed controller is easy adaption for 

critical loading values and fast reply capability. The 

responses show that the proposed controller has the ability 

to restore the power system stability in short time with less 

overshoot. The voltage stability control with SVC values 

which drag the operating load values of the example of 

power system into unstability is tested successfully. 

  
 

2. Differential algebraic power system model 
 

In general, power systems are modeled by the 

following set of differential and algebraic equations 
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where nx   is a vector of state variables associate with 

dynamic states of generators, loads, and other system 

controllers; my   is a vector of algebraic variables 

associate with steady-state variables resulting from 

neglecting fast dynamics, e.g., some load voltage phasor 

magnitudes and angles, etc; k  is a set of 

uncontrollable parameters, such as active reactive power 

load variations; and kp is a set of controllable 

parameters such as SVC susceptance.  

For the eigenvalue analysis (small signal stability or 

steady state stability analysis), (1) can be linearized around 

an equilibrium point (x0, y0) for given values of the 

parameters (μ, p) (an operating points). Thus, 
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where, J is a system in Jacobean matrix form, and 

01 |/ xfJ  , 02 |/ yfJ  , 03 |/ xfJ  , 04 |/ yfJ 

. If it is assumed that J4 is nonsingular, the system 

eigenvalues can be readily computed by eliminating the 

vector of algebraic variable Δy in (2), 

xAxJJJJx  )- ( 3
1-

421
  i.e., the DAE system can 

be reduced to a set of ODE equations [23]. 

 

2.1. Saddle Node Bifurcation (SNB) 

 

This equilibrium is typically associated to a saddle 

node bifurcation. At a SNB point, two equilibrium points, 

generally one stable and one unstable, coalesce and 

become a saddle-node point, and then disappear as the 

parameter passes through the bifurcation value. For the 

SNB, J has a simple zero eigenvalue with the remaining 

eigenvalues having non-zero real parts. Therefore, the 

necessary conditions for SNB are given by 

 

The first condition:  

 

           f(x0 , 0)=0                (3a) 

 

The second condition:  

 

         det J ((x0 , 0))=0             (3b) 

 

 

where, J is a system Jacobian, SNB is considered as a 

main reason for dynamic instability of the system (3) and  

associated with voltage collapse problems in power 

systems [24-25] . 

 
 

3. Simple power system 
 

The simple two bus system is shown in Fig. 1. The p.u 

dynamic equation (4)-(5) that represents this system using 

a generator classical model, a frequency and voltage 

dependent dynamic model for the load (Eq.6) are given by 

 

 

 

Fig. 1. Basic power system having SVC at the  

end of transmission line. 

 

 

Generator swing equations are given by 
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The dynamic equations for load at a bus are given by: 
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where the generator inertia and damping constants are 

represented by  M and DG ,  τ  stands for voltage time 

constants [26]. In this case, the power flow equations are 

given as following 
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QG is used to represent generator reactive limits. If 

maxmin GGG QQQ  , the generator voltage V1 is assumed 

to be controlled to represent somewhat the control actions 

of a voltage regulator or AVR; thus, neglecting droop and 

the control system dynamics, the voltage regulator is 

modeled hereby keeping the generator terminal voltage at 

the fixed value 1==
011

VV    

 

3.1 An illustrative example: Single-Machine  

   Dynamic-Load system with SVC 

 

An illustration for SVC is widely used in power 

systems to control the voltage at the load bus of the SMDL 

system, as illustrated in Fig. 1. 

SVC has been represented by dynamic SVC Model-

[27].  
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where BC is the equivalent susceptance of the SVC, T and 

Vref  are the SVC time constant and reference voltage, 

respectively. In the following, it is assumedthat T = 0.01 s 

and Vref = 1.0 p.u. Observe that, also in this case, it is 

possible to deduce the set of ODE, i.e., the algebraic 

variables can be explicitly expressed as a function of the 

state variables and  the parameters. 

The state matrix of (4-5-6-11) is as follows 
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Fig. 2 depicts the Pd-V curve for the simple power 

system. SNB points are                 

X0=[w0;δ0;V0;Bc0;Pd0]=[0.0; 0.6629;0.6343;0.0;0.78078], 

0.0;0.6629;0.0,6677;0.1;0.8218] and  [0.0; 

0.6629;0.7048;0.2;0.8675] for BC =0, BC =0.1 pu and BC 

=0.2 pu respectively. The voltage stability margin is 

therefore increased. The return points in Fig 2. are 

increased by applying higher BC values. 
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Fig. 2. Bifurcation diagram (Pd-V curve). 

 

 
4. Neural control 
 

Neural control refers to a methodology in which the 

controller itself is a neural network, and it is also to a 

methodology in which controllers are designed based on a 

neural network model of the plant. These two basically 

different approaches for implementing neural networks in 

control are defined as direct and indirect design methods. 

 Specifically, when mathematical models of the plant 

dynamics cannot be calculated, neural networks can 

provide a useful method for designing controllers and 

numerical information about the system behavior in the 

form of input-output data. 

Basically, to build a neural network based controller 

that can force a plant to behave in some desirable way, we 

need to adjust its parameters in terms of the observed 

errors that are difference between the plant’s outputs and 

desired outputs. Adjustment of the controller parameters 

can be achieved by propagating back these errors across 

the neural network structure [28]. 

There are many different types and architectures of 

NNs varying fundamentally in the way they learn, the 

details of which are well documented in literature. In this 

study, the multi layer perceptron and radial basis function 

are used as a SVC controller by using Neural Network 

Toolbox of Matlab/Simulink [29].  

 

4.1 Proposed multi-layer perceptron neural  

   networks 

 

Multi-layer perceptrons cover a large group of feed-

forward neural networks with one or more layers of 

neuron. In most applications, MLP networks have three 

layers in addition to input and output layers. Neurons in 

input layer have a pure linear activation function, but some 

nonlinear activation functions such as logarithmic and 

hyperbolic tangent functions are used in the neurons in 

hidden and output layers [30]. The multilayer feed-forward 

ANN shown in Fig.1. will be used in this work to adapt 
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the controller of the SVC in real time. Before the ANN is 

adapted to the controller in real time, it is necessary to 

determine a proper set of values for the connecting 

weights vji and wkj. 

The input and output values of the hidden layer are 

denoted xi and yj, respectively. We thus denote xi, for i = 1, 

2, . . . , I, and yj, for j = 1, 2, . . . , J, which defines signal 

values at the i'th column of nodes, and j'th column of 

nodes, respectively. Using the vector notation, the forward 

pass of the hidden neurons in the network shown in Fig. 2 

can be expressed as follows  

 

y=Γ[Vx]                      (12) 

 

 

 
 
 

Fig. 3. Multilayer feed-forward ANN. 

 

 

The input and and output values of the output layer 

are denoted yj and ok, respectively. We thus denote yj , for 

j = 1, 2, . . . , J  and ok, for  k = 1, 2, . . . , K, which 

represents signal values at the the j'th column of nodes, 

and k'th column of nodes, respectively. Using the vector 

notation, output of the network can be expressed as 

follows      

 

o = Γ[Wy]                      (13) 

 

 

which includes  input, output vectors, the weight matrix  

as mentioned and  Γ defines nonlinear diagonal operator 

[31]. 

Activation function used in hidden layers is a 

hyperbolic tangent function that can be derived. This 

function is similar to logistic function between +1 and -1.  

Its equation is mentioned as below. Linear activation 

function is used in output layer. 

 

xexe

xe-xe
tanh(x)f(x)

+
==               (14) 

In this study, generalized delta rule is used as a 

learning rule, and weights are updated according to the 

errors between network and desired outputs. Hence, this 

algorithm is called as a back propagation algorithm. 

Training process of the back propagation algorithm runs 

according to the following steps [32]  

 

Step 1: Initialize all weights at   

random  

Step 2: Submit pattern x and compute 

layers' responses 

y = Γ [Vx], o = Γ [Wy]  

  

Step 3: Compute cycle error 
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Step 4: Calculate errors δo, δy  
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Step 5: Adjust weights of output 

layer 

W’←W+ηδoy
t 

Adjust weights of hidden layer 

V’←V+ηδyx
t 

Step 6: Iterate the calculation by 

returning to Step 2 until the error is 

less than the desired error. 

where δo and δy, are the column vector with entries δok  

are δyj respectively 

 

 

4.2 Proposed radial basis function neural networks  

 

RBF networks have been proposed and used as an 

alternative to the MLP network for many engineering 

problems. Architecture of a RBF network is similar to a 

MLP network. RBF networks have three layers called as 

input, hidden and output layers like MLP networks. The 

neurons within each layer are fully connected to the 

previous layer neuron. However, input variables are 

directly transferred to the hidden layers. The connections 

between input and hidden layers do not have any weight 

coefficient. So, neurons in the hidden layer receive the 

incoming input variables with an unchanged situation [33]. 

In this study, a typical RBF structure is used as illustrated 

in Fig. 4. 

Radial basis Gaussian Function (15) is considered as 

transfer function in this study 
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Fig. 4. RBF neural network. 

 

where c is the center , σ is the variance and u is the input 

variable. The output of the k'th neuron in the output layer 

at time 
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5. layer is the hidden layer as shown in Fig. 3. The output 

of each neuron is calculated by using Equation 17 and is 

used in 4.3. with weights. Here, wi is weigth parameter and 

H is number of hidden layer, 

 

 
 

H

i

m

j
jjji

H

i
iik cuwywo

1 11

)),,(((        (17) 

 

Traning process of the radial basis function neural 

network runs according to the following steps [34]  
 

Step 1: Initialize all weights at 

random  

Step 2: Submit pattern u and compute 

layers' responses.Use 

∏ )),,(
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Step 3: Compute cycle error 
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Step 5: Iterate the calculation by 

returning to Step 2 until the error is 

less than the desired error. 

 

 

4.3 Application of ANN to adapt SVC controller 

 

The proposed training structure is shown in Fig. 5. In 

the proposed methods, we used an adaptive controller. The 

controller is referred as “adaptive” due to the continuity of 

the learning process. The objective is to train the neural 

network in such a way that the controller will enable the 

plant to produce the desired outcome. To achieve this, the 

neural network should be trained in such a way that the 

input of error e(t) produces the proper control parameter 

u(t) which will be applied to the plant to produce y(t) [30].  

The multilayer feed forward and RBFNN controller 

have one input and one output as illustrated in Fig. 3 and 

Fig. 4. 

 

 

 
Fig. 5. Proposed neural network controller. 

 

 

The neural network controller is trained online, and 

produces an appropriate SVC susceptance in order to catch 

the reference signal. There are five neurons in the hidden 

layer. The hidden layer has nonlinear activation functions, 

and the output layer has a linear activation function. For 

every input, the function produces an output. The 

parameters of ANN are updated by using the error 

between the ANN output and the reference model. 

Network architecture is given in Table 1. Gaussian 

function in hidden layer and linear activation function of 

output layer is used. 

 

 

Table 1. Structure of trained Neuro-Controllers. 

  

Parameters  Multi-layer 

perceptron 

Radial basis 

function 

Hidden layers 1 1 

Input layers   1 1 

Hidden neurons 5 5 

Output neurons 1 1 

Learning rate 0.2 0.051 

 

 

5. Simulasyon results 
 

To assess the effectiveness of the proposed controller, 

simulation studies are carried out for reactive power 

increase and line impedance variation conditions and 

overload conditions in two bus system and the reactive 

power increase in nine bus system.  

 

 

5.1 Two bus simple system 

 

To test the performance of the proposed SVC 

controller, the two bus power system shown in Fig.1 is 

introduced. Augmentation scenarios are considered as load 
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disturbance. The objective is to fix the voltage magnitude 

of the bus at 1 p.u. during simulation. 

The steady state load demand is modeled through the 

parameter Pd, under the assumption that reactive power 

load demand is directly proportional to the active power 

demand, i.e, Qd =k.Pd ; this parameter is used here to carry 

out he voltage collapse studies. SVC operated capacitive 

mode provide out compensation effect for power system 

stability. To simplify the stability analysis, the resistance 

and line susceptance are neglected (R=0, BL=0), Pm=Pd. 

The initial loading condition, as considered or not, as 

discussed below.  

 
 

Table 2. The initial load conditions. 

 

Generator inertia  coefficient [M] 1 p.u 

Generator damping coefficient [DG] 1 p.u 

Time constant [τ] 100 s 

load power factor [k] 0.25 

reactance of transmission line [ X] 0.5 

Active demand power [Pd] 0.6 

Reactive demand power [Qd=k* Pd] 0.25*0.6 

 

 

5.1.1 Test 1 Increasing reactive power demand 

 

The reactive power demand [Qd] is chosen as the 

system parameter. In Test 1, the parameter Qd  is 

increased to test to simulate the dynamic voltage collapse 

phenomenon.  In order to further demonstrate the 

effectiveness of the proposed controller, the level of 

reactive power demand is increased from k=0.25. to 0.5 in 

3th seconds (Fig. 6.a). This progressive loading scenario 

will drive the power system from normal operating to 

voltage instability or collapse. Fig. 6 illustrates the 

response curves of the system against time of the sample 

system. In Fig.(6.b) shows the load bus voltage variation  

before and after the disturbance. It can be seen that the 

proposed both neural network controllers achieves good 

performance in  voltage controlof load bus (Fig. 6.b) It is 

tried to stabilize the load bus voltage at 1.0 pu by 

preventing the voltage collapse at the values. When 

demand reactive power (Qd) are increased, neural 

controller prevents the voltage instability. 

Voltage is below 0.7 pu without SVC. In Fig. 6c. 

Susceptance values are shown in both controller output 

and SVC output. RBFNN based controller catches the 

required susceptance value in a short time 

(BSVCcontrolled=0.392 p.u) however, SVC model gives 

(BSVCdynamic model=0.388 p.u) so RBFNN has shown the best 

performance. Figure 6d shows that generator angle 

increases without SVC state. As a result of this, the system 

goes towards to unstable state.  
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Fig. 6. The simple two bus system  a)applied Pd Qd b) 

variation  of   load   bus   voltage  c) variation of the  

     susceptance d) variation of the generator angle. 

  

 

 

5.1.2. Test 2. Change in line impedance 

 

It is assumed that at this part of training the reactance 

of the transmission line increased from 0.5 pu. to 1.0 pu by 

detaching one of the paralel lines as a results of error 

occured at the transmission line (Fig. 7.a). The simulation 

results are shown in Fig. 7. 

It can be seen that the proposed controllers achieves 

good performance in voltage control of load bus. In 

RBFNN- based control, load bus voltage reaches the rated 

value (1.0 p.u) quickly as compared MLP-based control 

(Fig 7.b). 

After the first peak, RBFNN controller returns to the 

previous value smoothly.  The voltage collapse existed 

after the disturbance effect in the system without SVC. 

From the above results, we see that voltage stability can be 

improved by the proposed controllers. 
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Fig. 7. Two bus system a)Applied line  reactance 

changing b) variation of load bus voltage c) Variation of  

    the susceptance d) variation of the generator angle. 

 

 

 

In order to make comparision, output and error 

variations related to the proposed controllers are also 

investigated. Error curves are obtained according to the 

reference signal which is 1 per unit. At the end of the 

period of training, error signals in voltage signals are given 

at Fig. 8a-b. It is seen from these figures that smoothness 

is more in RBFNN-based controller than in MLPNN-

based controller. It is seen from Figs. 8b and 8e multilayer 

perceptron network controller small oscillations occurred 

at 3th second, where the disturbance is applied. This 

controller caught the reference signal with a small delay. 

But both the controllers managed to catch the 

reference signal successfully. This situation can be seen in 

Fig. 8b obviously. The Fig. 8e was drawn in order to 

observe the oscillations well. 
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Fig. 8. Trained neural network and SVC dynamic model 

for a) error RBF network variations of load bus voltage 

b) error MLP network variations of load bus voltage c) 

error SVC dynamic model of load bus voltage d) error 

PID controller of load bus voltage e) zooming of network  

                     errors.  

 

  

 

6. Applying to N-Bus power systems 
 

The ANN -based SVC is implemented to in the three 

machine nine-bus system with three machine (WSCC 

system). The one line diagram of WSCC system is given 

Fig. 9. Details of the system data are given in Ref.[35]. 

Obtained conclusions result from load flow calculation 

shows in Table 3. 
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Fig. 9. Nine bus WSCC network. 
 

 

Nine-bus power system which shown in Fig. 9 is 

reduced to two bus power system by using “The Reducing 

Bus Method”. Bus no 5 is chosen as critical bus due to the 

voltage value under 1.0 p.u. The power system is reduced 

to two bus system that consist of slack bus and bus no 5 

whereas protecting the structure of nine bus system. Bus 

admittance matrix 
redbusY is achieved equation, as follows; 

 

redbusY = 












j7.3574 - 0.1526-    7.5640  0.5304-  

j7.5640  0.5304-       j7.5136 - 0.6649  

j
 

 

where, the parameters of pi equivalent circuit having the 2-

bus are A =0.9665 - j.0879, B =0.0092 + j0.13160, C =-

0.5486 + j0.2436,  =D 0.9946 + j0.0182 

The stable operation point of reduced bus 5 is 

illustrated in Fig. 10. It is seen that voltage and angle 

values are the same with unreduced (original) system.  
 

 

 

Table 3. Power flow results of nine bus system (without SVC). 

  

Bus 

no 

Bus 

type 
V p.u.  δ(deg.) P(MW)  Q(MVar) 

1 Slack 1.0400    0.000   71.64     27.045 

2 PV 1.025     9.280  163.00      6.653 

3 PV 1.025     4.664   85.00    -10.859 

4 PQ 1.0258   -2.216    0.00      0.000 

5 PQ 0.9956   -3.988 -126.01    -50.440 

6 PQ 1.0127   -3.687  -87.76    -29.250 

7 PQ 1.0258    3.719   0.00       0.000 

8 PQ 1.0159    0.727  -96.90    -33.910 

9 PQ 1.0324    1.966 0.00         0.000 
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Fig. 10. In the bus 5 for loading condition of 1.25+ 0.5 

p.u  a)  Load  voltage b)  Difference with load  and  

         generator angle oscillations (δ= δ1-δ2 ).  

 

 

The performance and effectiveness of the proposed 

controller has been evaulated by simulating 9 bus test 

system. In order to keep voltage of bus 5 at 1 p.u one SVC 

is placed. 

In Fig. 10a, the voltage of the system without SVC 

system is similar to the value obtained with the power 

flow. The proposed ANN controllers compared with 

conventional PID controller. With the initial power flow 

conditions, the level of reactive power demand is 

increased from 0.5 to 1.0 pu 5 s. The variation of bus 

voltage and susceptance of SVC are shown in Fig. 11a and 

Fig. 11b respectively to compare. The proposed ANN 

based controller has a less settling time than PID 

controller. It is clear that the best results are obtained by 

RBFNN controller is better than MLPNN and the PID 

controller. 
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Fig. 11. Nine bus system a) variation of load bus 5 voltage  

b) Variation of the susceptance. 
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7. Conclusıons 
 

In this paper, two contributions are provided for is 

made to voltage stability enhancement. Firstly a novel bus 

reducing method, with the original system structure 

protected, is proposed. Secondly, a novel voltage stability 

enhancement method is proposed using on-line trained 

ANN based SVC controllers. The proposed controllers are 

trained by using, two types of learning methods: Multi 

layer perceptron and radial basis function. The simulation 

results  shows that  the proposed controllers provide a 

fast  learning by finding the target susseptance value of 

SVC, and thus, improved voltage stability. The proposed 

controllers also tracked the reference signal succesfully 

even though the applied disturbance effect. 

When both controllers are compared to each other, 

RBFNN controller has much more performance due to 

reaching to stable state with smaller oscillations hence, 

smaller error rates. 

 

 

Appendix A 

 

The calculation of power flows is performed with all 

of the available information given in the form of 

interconnection of nodes and power injections. All of the 

system interconnections between nodes are combined into 

a single matrix known as the Ybus, or the admittance bus 

matrix, (Figure.12.a) [36]. Where, n is the number of 

buses; ng, the number of generator and nl, is the number of 

loads. 

 

A.1 Two–port network implementation 

 

According to voltage stability, except for load bus 

defined as critical values with a P-V bus chosen as slack 

bus, after it is obtained voltage and current profile of all 

power system using load flow in order to any load. Our 

proposed method is that power injections of all other 

buses, with scrutinized current directions, are added to bus 

admittance matrix. Thus the system is protected in order to 

that loading condition. Except for concerning bus and 

slack bus, all other buses are reduced by applied “Bus 

Reducing Technique” to newly attained “Bus Admittance 

Matrix” as shown Fig. 12.  

Note that the two port models, which implies that; 

their admittance matrix is symmetric, i.e. Yij =Yji and they 

can be represented by a pi-equivalent as shown in Fig. 12c 
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Fig. 12. (a). Current flow conventions, (b) Reduced system 

c) Pi-equivalent of reciprocal two-ports. 

 

 

To illustrate the power flow equations, the power flow 

across the general two-port network element connecting 

buses i and j shown in Fig. 12.b is considered and the 

following equations are obtained. The injected active and 

reactive power at i.bus (Pgi and Qgi) 
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similarly, 
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In order to SVC connected to j. Bus, reactive power 

Vj
2 

Bsvc produced by SVC is added as additional Qij 

reactive power. Where pi equivalent network constants of 

two-ports reduced system are A =a1+ja2, B b1+jb2, 

C c1+jc2, D d1+jd2 
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